Addressing the Lingering Concerns of Late DES Safety and Efficacy

Ajay J. Kirtane, MD, SM

Columbia University Medical Center / New York Presbyterian Hospital

Conflict of Interest Disclosure

- Ajay J. Kirtane
 - In the last 12 months, I have received honoraria/consultancy fees from Abbott Vascular, Boston Scientific, and Medtronic CardioVascular
 - Off-label use will be discussed

Following the Introduction of DES Things were going well...

- Early Pivotal RCTs
 - Marked efficacy compared to BMS at intermediate durations of follow-up
 - Limited pooled data (overall small numbers)
- Supplemented by Observational data
 - Single center analyses (AMC, Thoraxcenter)
- Even demonstrated efficacy in RCTs and observational analyses of complex lesion subsets
- Clear, consistent effect on restenosis-related endpoints, but limited power to assess safety...

DES Concerns in the Background

- DES impair normal vascular healing
 - Persistent (?toxic) polymer and drug effects
- Vascular inflammation, incomplete endothelialization, fibrin deposition, platelet activation may all have clinical sequelae
 - Stent Thrombosis
 - Abnormal Vasomotion, Aneurysm Formation, Late Restenosis

DES Studies: Initial Potential Concerns Explode in 2006!!!

- SCAAR (the first time around)
 - Large multicenter observational study
- Camenzind and Nordmann meta-analyses
 - Randomized data implicated with a signal of possible harm
- Bern-Rotterdam Analysis
 - The pathophysiologic link?

Network Meta-Analysis: Cumulative Incidence of Cardiac Death

All-Cause Mortality: RCT's (Off-Label) 4,049 patients, 12 trials, mean F/U 1.5 years

All-Cause Mortality: Observational Studies 169,595 patients, 31 registries, mean F/U 2.5 years

Cumulative Incidence of ARC Def/Prob ST over 4 yrs after DES (CYPHER & TAXUS)

² Wenaweser et al; J Am Coll Cardiol 2008;52:1134-40

Drug-Eluting Stents.... the good, the bad, and the ugly!

DES Use in 2010: Persistent Concerns Linking pathology with clinical outcomes

- Safety
 - We may feel better about mortality now, but LST is a real phenomenon!!
 - Do we know how to prevent LST?
- Efficacy
 - Late catch-up of ISR/TLR may limit the long-term absolute efficacy of DES

Potential Strategies to Address ST

- Early ST (similar to BMS)
 - PCI optimization (?IVUS), patient/lesion selection, antiplatelet therapy with appropriate response to it
- Late ST
 - DES designs to reduce inflammation and improve healing
 - Polymer adaptations / Drug duration
 - Polymer-free systems
 - ?DAPT duration

IVUS Correlates of VLST

	DES VLST (n=23)	BMS VLST (n=7)	P value
QCA: Index RVD	2.97	3.66	0.010
QCA: Post Stent MLD	2.70	4.08	<0.001
IVUS at Time of VLST (DES Median <3 yrs, BMS Median 9 yrs)			
Total stented length	32.9	18.6	0.001
Minimal Lumen CSA	4.20	4.73	0.564
Mimimal Stent CSA	6.15	7.42	0.413
Mean Neointimal Area	3.07	5.03	0.014
Neointimal Vol. index	0.42	0.51	0.069
Incomplete Apposition	17 (73.9%)	0 (0%)	0.001
Neointimal Rupture	10 (43.5%)	7 (100%)	<0.010

Pathologic Causes of LST: CV Path

- Stent Malapposition (40%)
- AMI Indication (40%)
- Bifurcation Indication (30%)
- Necrotic Core Penetration/Prolapse (25%)
- Long Stenting (>40 mm) (20%)
- Hypersensitivity Reaction (15%)
- Unknown/Other (5%)
- Stent Underexpansion (<5%)

Comparison of Coronary Vasomotion Between DES and BMS

Endeavor Pooled Safety Analysis ARC Definite/Probable ST to 5 years

Stent Thrombosis (ARC Definite/Probable)

ZEST-LATE + REAL-LATE: Cardiac Death or Myocardial Infarction

TAXUS II, IV, V, VI: Death and MI within 7 Days of TLR and Stent Thrombosis

Potential Effect of Excess VLST with DES: A Decision Analysis

DES Efficacy Concerns

- Overemphasis on relative risk reductions (40-50%) vs. absolute risk reductions (which are based upon baseline risk) may not be clinically sound
 - Routine angiographic follow-up may have exaggerated the benefits of DES over BMS
- Late catch-up ISR/TLR may limit the long-term efficacy of DES

Primary Efficacy Endpoint: Ischemic TLR

1-Year TLR According to BMS Risk Score (N=2915)

Stone GW. ACC 2009.

HORIZONSAMD

Regression of Neointima after BMS

72 lesions with sequential studies through 3 yrs

+0.14 mm Increase in MLD from years 1-3

Late Restenosis after DES? Animal Data

ISAR Data: Late Loss at 2 Years

CARDIOVASCULAR RESEARCH

BMS versus DES Clinical Trials: Late Events

SIRIUS 5-Years

TAXUS 5-Years

R. Chacko et al. JACC Intv. 2009;2:498-503

M. Leon et al. JACC Intv. 2009;2:504-12

SIRTAX-LATE: Late Loss Over Time

SIRTAX-LATE: Evolution of MLD

Paired Angiograms

L. Raber, TCT 2009

SPIRIT II: In-stent Late Loss in 132 Patients with Serial 6 Month and 2 Year Angio FU

For patients having TLR, values of late loss observed prior to 6 month or 2 year FU were imputed

Claessen BE. Circ Cardiovasc Intervent 2009

Pivotal Trials TLR: DES Arms Rates of TLR Over Time

Late DES Issues: Safety and Efficacy

- Overall safety is very comparable to BMS with follow-up generally ≤5 years
 - DAPT adherence is critical early on
- Late stent thrombosis remains a concern, and realworld data 5 years and beyond is now emerging
 - How to prevent late stent thrombosis?
- Relative DES efficacy is unquestionably improved vs. BMS, but absolute differences in TLR rates may vary by overall patient risk and if late catch-up is a real phenomenon

What of These Lingering Concerns?

- Webster's Definition of "lingering"
 - a: to remain alive although gradually dying
 - b: to remain existent although often waning in strength, importance, or influence

Improvements/Innovations in DES technology should hopefully allow these concerns to rest in peace!

